

Estimation of an equilibrium model with externalities: Post-disaster neighborhood rebuilding

Fu, C. and Gregory, J., 2019

Dongchen He

Environmental Reading Group

April 3, 2025

Motivation

- Individuals' decisions are often interrelated. One's choice is affected by the choices of others.
- Examples:
 - New technology adoption.
 - Investment in financial markets.
- **Key question:** How to measure this **spillover effects (externality)?**
- **Why important?** The prediction of policy outcome can be biased if spillover effects are not correctly captured.

This Paper

- The Louisiana Road Home program (RH) that provided financial assistance to homeowners affected by Hurricane Katrina.
- Regression Discontinuity Design (RDD) to identify the spillover effects of the RH program.
- Build a dynamic equilibrium model to capture this spillover effect, and run counterfactual analysis.
 - Partial equilibrium: no spillover
 - General equilibrium: with spillover

Data

- Assessor's property data: time of home repairs & sales; transaction prices. 2004-2010
- Road Home program data: application dates, grant amounts, grant type, cost appraisal, and private insurance payments paid to households.
- FEMA data: damage assessments (depth of flooding).
- 2000 Census data: demographic characteristics of the neighborhood.
- DNORS, ACS: salary and employment data.
- Federal Reserve Bank of New York Consumer Credit Panel/Equifax: neighborhood-level credit scores.

Data are merged by street address: 60175 households living in 4795 blocks.

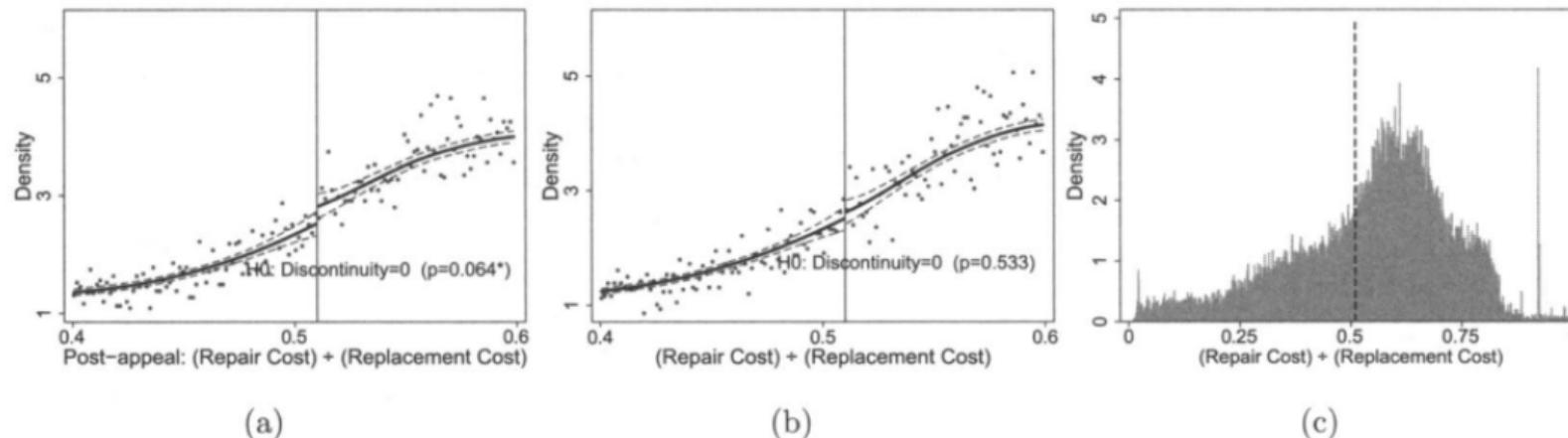
Summary Statistics (Table 1)

TABLE I
DESCRIPTIVE STATISTICS, HOUSEHOLDS^a

Variable	All HHs	HHs With Initially Damaged Homes
Demographic composition:		
Percent black (Census block)	57	65
Percent college educated (Census tract)	51	49
Pre-Katrina block flood exposure:		
<2 feet	46	23
2–3 feet	12	16
3–4 feet	11	16
4–5 feet	10	15
5–6 feet	6	9
>6 feet	15	21
Equifax risk score (spatial moving average):		
<600	20	21
600–625	17	18
625–650	17	18
650–675	14	14
675–700	12	9
700–725	10	10
>725	11	9
Home damage and insurance:		
Damage fraction (repair cost ÷ replacement cost)	0.39 (sd = 0.32)	0.58 (sd = 0.21)
Insurance fraction (insurance ÷ replacement cost)	0.23 (sd = 0.21)	0.30 (sd = 0.22)
Importance of Road Home grant formula discontinuity:		
Damage fraction within 2 pct. pts. of RD threshold	4.4	6.6
Road Home participation:		
Nonparticipant	49	36
Rebuilding grant (option 1)	44	55
Relocation grant (option 2 or 3)	6	9
Home repaired by the pre-Katrina owner by year:		
Immediately after Katrina	33	0
1 year after Katrina	42	13
2 years after Katrina	47	21
3 years after Katrina	52	29
4 years after Katrina	65	47
5 years after Katrina	70	54

Two Facts of the Program

- (1) There are two types of grant packages:
 - ① Rebuilding: up to \$150,000
 - ② Relocation: up to \$150,000 conditional on turning over the property to the state.
- (2) There is a threshold of 51% damage to determine the RH grant.


$$\text{RH Grant} = \begin{cases} \min([\text{RepairCost}] - [\text{Insurance Payout}]; \$150k) \\ \quad \text{if } \frac{[\text{RepairCost}]}{[\text{Replacement Cost}]} < 51\%, \\ \min([\text{Replacement Cost}] - [\text{Insurance Payout}]; \$150k) \\ \quad \text{if } \frac{[\text{RepairCost}]}{[\text{Replacement Cost}]} \geq 51\%. \end{cases}$$

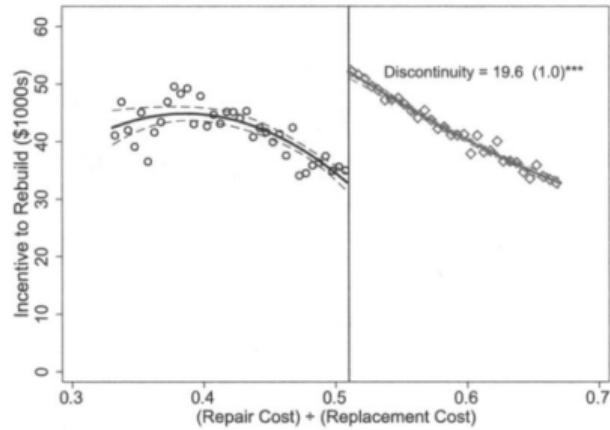
Damage Fraction

A **financial incentive shock** for households just above 51% damage.

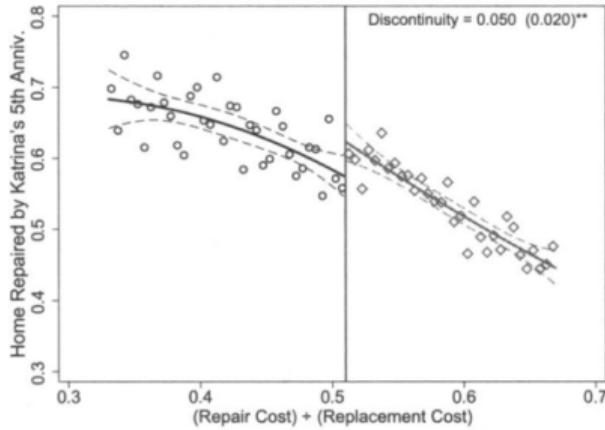
Regression Discontinuity Design I

- Validity assumptions: Households cannot perfectly control damage fractions.
- Sample balance: Table 2
- Continuity at 51% in damage appraisal

Regression Discontinuity Design II


Empirical challenge: identify two effects with one policy shock

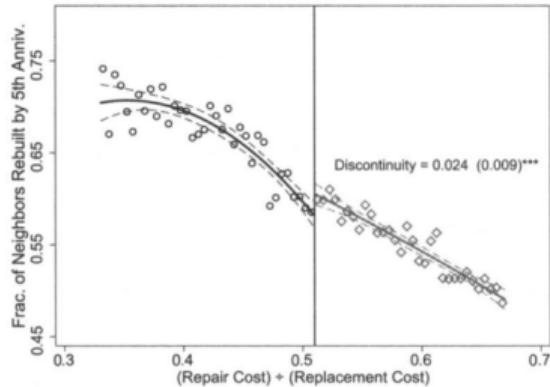
- **Direct effect:** the effect of the RH grant on the household's decision to rebuild.
- **Spillover effect:** the effect of the the rebuilding decisions of neighbors on the households.


Estimation Strategy:

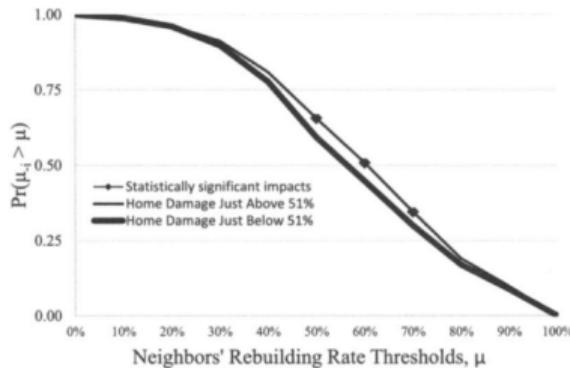
- Group A: households with damage just above 51%
- Group B: households with damage just below 51%
- Group C: neighbors of group A.
- Group D: neighbors of group B.
- direct effect: A-B
- spillover effect: C-D

Regression Discontinuity Design III

(a)


(b)

Direct financial effect:


- Figure (a): opportunity cost of relocating increased by \$19.6k at the 51% threshold.
- Figure (b): the probability of rebuilding increases by 5% at the threshold.

Regression Discontinuity Design IV

- Spillover effect = 2.7%
- Spillover effect operates primarily for the blocks that have experienced rebuilding rates of 50%-70%.

(a) Neighbors' Rebuilding Rate by Home Damage Fraction

(b) Neighbors' Rebuilding Rate CDF Above/Below Grant Threshold

Model Framework I

- blocks: j , household: i .
- **Dynamic model:** hurricane occurs at year $t = 0$. Households decide to rebuild, relocate, or neither from $t = 1$ to $t = 5$.
- households' per-period utility

$$v_{it}(\mu_{j(i),t}; d_{it}) = \begin{cases} \ln(c_{it}) & \text{if } d_{it} < 1, \\ \ln(c_{it}) + a_{j(i)} + g(\mu_{j(i),t}) + \eta_i & \text{if } d_{it} = 1, \end{cases}$$

- c_{it} : consumption.
- $a_j(i) + g(\mu_{j(i),t})$: neighborhood amenities:
 - $a_j(i)$: exogenous constant. $\mu_{j(i),t}$: the fraction of neighbors who have rebuilt.
 - **contribution:** $g(\mu) = \mathbf{S} \times \Lambda(\mu; \lambda)$
- $d_{it} = 1$: rebuilding. $d_{it} = -1$: relocating. $d_{it} = 0$: neither.

Model Framework II

- Monetary incentives: Mortgage balance, cost/values of houses, cost of repairing/restoring houses, RH grants, insurance payments, wages.
- intertemporal budget constraint:

$$\begin{aligned} c_{it} = & 1(d_{it} = 1) \times w_i^1 + 1(d_{it} < 1) \times w_i^0 && \} \text{ labor earnings} \\ & - 1(d_{it} < 1) \times \text{rent}_i - 1(d_{it} > -1) \times \text{mortgage}_{it} && \} \text{ flow housing costs} \\ & - 1(d_{it} > d_{i,t-1}) \times k_i \\ & + 1(d_{i3} = 1 \text{ and } t = 3) \times G_{1i} \\ & + 1(d_{it} > d_{it-1} \text{ and } t > 3) \times G_{1i} && \} \text{ repair costs/reimbursements} \\ & + 1(d_{it} < d_{it-1}) \times \max(G_{2i}, p_i) && \} \text{ home sale proceeds} \\ & + A_{it} - A_{it+1}/R_t && \} \text{ change in asset holding.} \end{aligned}$$

Household Problem: dynamic choice

- V^0 : waiting, V^1 : rebuilding, V^{-1} : relocating.
- \mathcal{T} : endogenous law of motion of rebuilding rate.

At $t \in \{1, 2, \dots, T\}$, households that have not rebuilt or sold their houses choose to rebuild, sell, or wait, such that

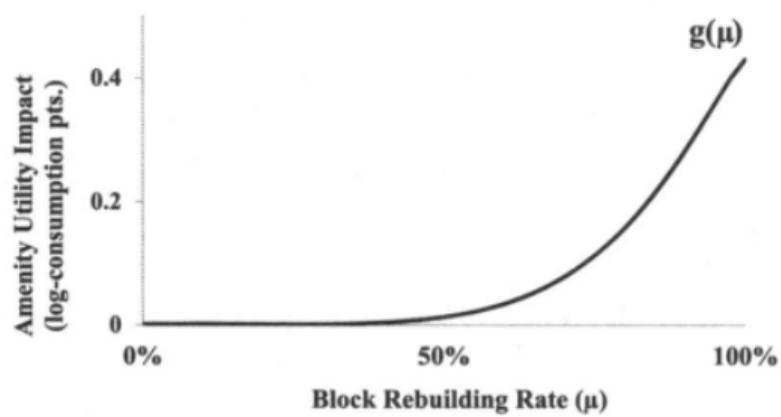
$$V_{it}^0(\mu_{j(i),t-1}) = \max \left\{ \begin{array}{l} v_{it}(\mu_{j(i),t}; 0) + \beta V_{it+1}^0(\mu_{j(i),t}), \\ V_{it}^{-1}(\mu_{j(i),t-1}), \\ V_{it}^1(\mu_{j(i),t-1}) \end{array} \right\} \quad (10)$$

s.t. $\mu_t = \Gamma_{jt}(\mu_{t-1})$.

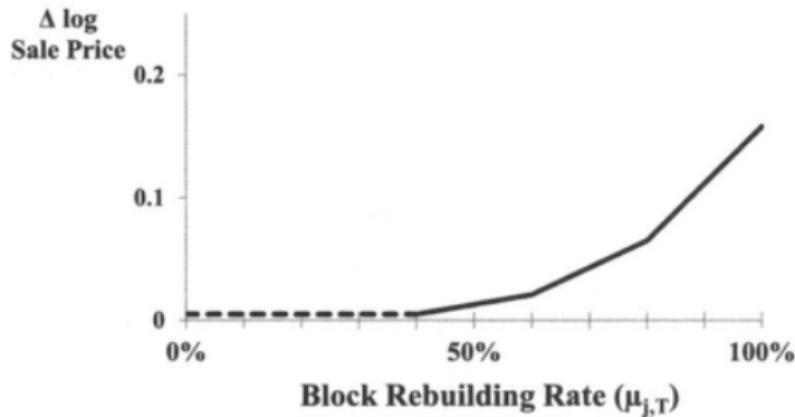
Beyond T , rebuilding is not an option, so that $\Gamma_{jt}(\mu_T) = \mu_T$ for all $t > T$ and

$$V_{i,T+1}^0(\mu_{j(i),T}) = \max \left\{ V_{it}^{-1}(\mu_{j(i),T}), \sum_{t' \geq T} \beta^{t'-T} v_{it'}(\mu_{j(i),T}; 0) \right\}.$$

Equilibrium


DEFINITION 1: Given $\mu_{j,0}$ and $\mu_t = \mu_T$ for all $t > T$, an equilibrium in community j consists of (i) a set of optimal household decision rules $\{\{d_{it}^*(\cdot)\}_{t=1}^T\}_{i \in I_j}$, (ii) a sequence of period-specific rebuilding rates $\{\mu_{j,t}\}_{t=1}^T$, and (iii) laws of motion $\{\Gamma_{jt}(\cdot)\}_{t=1}^T$ such that:

- (a) Given $\{\mu_{j,t}\}_{t=1}^T$, $\{\{d_{it}^*(\cdot)\}_{t=1}^T\}_{i \in I_j}$ comprise optimal decisions.
- (b) The laws of motion $\{\Gamma_{jt}(\cdot)\}_{t=1}^T$ are consistent with individual choices such that


$$\mu_{j,t} = \Gamma_{jt}(\mu_{jt-1}) = \mu_{jt-1} + \frac{\sum_{i \in I_j} I(d_{i,t}^* > d_{i,t-1}^*)}{I} \quad \text{for } 1 \leq t \leq T.$$

Results

Full results (Table 3)

(a)

(b)

- Full rebuilding increases utility by an amount equivalent to a 53% increase in consumption.
- Full rebuilding increases the house sale price by 20%.

Decomposition of the grant effects

TABLE IV
RH'S PARTIAL-EQUILIBRIUM AND EQUILIBRIUM EFFECTS ON REBUILDING^a

Subgroup	No Grants Rebuilding Rate	(2) Rebuilding Rate Impacts		(4) Spillover Multiplier
		Partial Equilibrium Road Home	Equilibrium Road Home	
All	61.7	+6.3	+8.0	1.27
Flood depth:				
<2 feet	76.2	+4.0	+4.5	1.13
2–3 feet	59.7	+10.5	+14.1	1.34
3–4 feet	59.5	+7.9	+11.2	1.42
4–5 feet	46.2	+9.4	+12.6	1.34
5–6 feet	35.6	+7.6	+9.3	1.22
>6 feet	42.4	+6.3	+8.0	1.27
Rebuilding Rate w/o RH:				
90–100%	99.3	+0.1	+0.2	2.00
80–90%	85.1	+3.5	+5.3	1.51
70–80%	75.6	+5.5	+8.8	1.60
60–70%	66.0	+7.4	+11.0	1.49
50–60%	55.1	+8.0	+11.2	1.40
40–50%	45.4	+9.0	+11.8	1.31
30–40%	36.7	+9.7	+11.7	1.21
20–30%	26.2	+10.3	+11.9	1.16
10–20%	16.6	+13.4	+14.7	1.10
0–10%	4.7	+14.7	+14.9	1.01

RH vs. Unconditional Grants

- Rebuilding grant > relocation grant: households' choices are biased, **welfare loss**.
- more rebuilding increases block amenity: **welfare gain**.
- welfare change: $dW_i^{RH} = EV_i^{RH} - (\text{Grant}_i^{RH} - \text{Grant}_i^{Uncon})$

TABLE VI
DECOMPOSING THE WELFARE EFFECTS OF RH'S REBUILDING STIPULATIONS^a

Group	Marginal (%)	Inframarginal Households (\$)	Marginal Households (\$)	Total (\$)
All	9.1	4950	-24,360	2177
<2 feet	4.8	1954	-35,050	140
2-3 feet	15.7	12,890	-19,170	7726
3-4 feet	13.4	10,010	-18,350	6133
4-5 feet	14.8	7384	-21,300	2988
5-6 feet	11.0	2894	-26,570	-475
>6 feet	9.7	4453	-23,240	1656

- No spillover: RH < Unconditional grants.
- With spillover: RH > Unconditional grants.

Optimal Policy

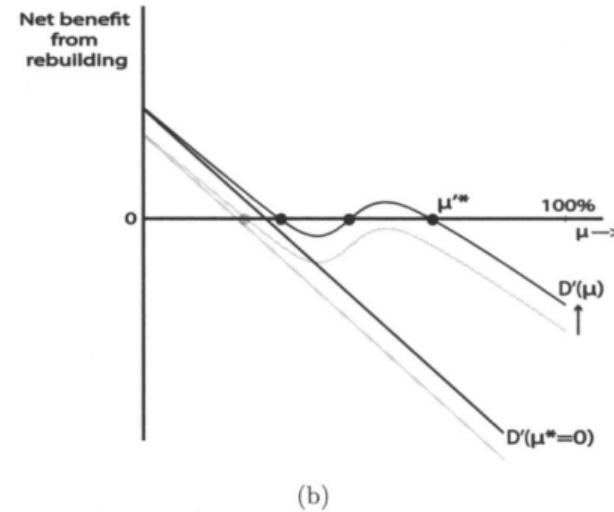
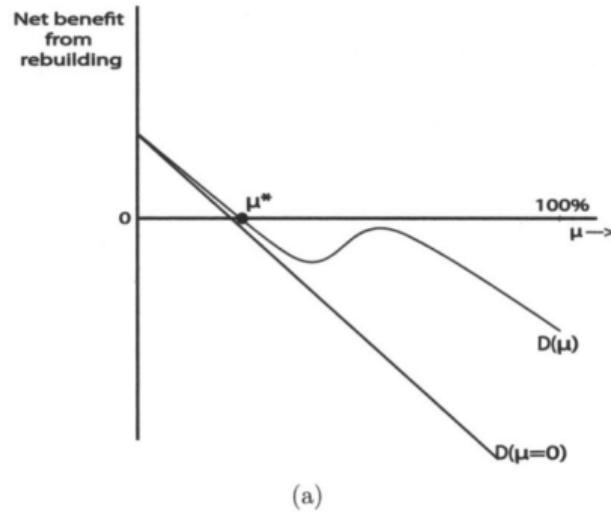


relocation grant = $(1 - \rho) * \text{rebuilding grant}$. Given optimal fraction ρ^* ,

TABLE VII
THE WELFARE CONSEQUENCES OF ALTERNATIVE POLICIES^a

Policy	(1)	(2)	(3)	(4)
	Govt. Savings	Per Capita	Δ Tot. Welfare	Aggregate
Unconditional grants [reference policy]	\$0	\$0	\$0	\$0
Category-specific welfare-maximizing ρ^* :				
City is one category (uniform policy)	\$9593	-\$6945	\$2648	+\$159M
Categories based on block demographics	\$9555	-\$6618	\$2936	+\$177M
Categories based on $t = 0$ damage-%	\$9111	-\$6022	\$3090	+\$186M
Categories based on flood depth	\$8342	-\$4731	\$3611	+\$217M
Categories based on $t = 0$ damage-%, and flood depth interactions	\$7047	-\$2980	\$4066	+\$244M
Perfect block-level targeting	\$3951	\$2048	\$6000	+\$361M

Tipping I

Multiple equilibria could exist, and policy can intervene to restrict the choice set.

Tipping II

TABLE V
NEIGHBORHOOD TRAITS, REBUILDING RATE IMPACTS, AND WELFARE IMPACTS BY NUMBER OF EQUILIBRIA

	Group 1: Unique	Group 2: Multiple
A. Neighborhood Characteristics		
Pre-Katrina block flood exposure:		
<2 feet	51	16
2–3 feet	10	24
3–4 feet	9	23
4–5 feet	9	14
5–6 feet	7	3
>6 feet	14	19
Demographic composition:		
Percent black (Census block)	55	67
Percent college educated (Census tract)	52	47
Equifax risk score (spatial moving average):		
<600	18	22
600–625	16	21
625–650	17	17
650–675	14	15
675–700	13	6
700–725	10	8
>725	12	10
Percent of replicated blocks	84.0	16.0
B. RH Rebuilding Impacts		
No grants Rebuilding Rate	62.1	58.0
Partial Eqm. RH Impact	+5.9	+8.7
Equilibrium RH Impact	+6.3	+16.6
Multiplier	1.07	1.92
C. RH Welfare Impacts		
Equilibrium RH Impact (per capita)	\$627	\$8602

Take aways

- This paper proposes a dynamic equilibrium model to capture the spillover effects.
- Including spillover effects will result in different policy predictions.