

"Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry"

by Aghion et al. (2016)

Presenter: Shengyu Li

Env Reading Group

August 16, 2023

Research Question

- Examine whether firms redirect technical change away from dirty technologies and toward cleaner technologies in response to increase in fuel prices in the context of path dependency.
 - ➊ Does directed technical change exist in the auto industry?
 - ➋ Does path-dependent innovation exist in the auto industry?
 - ➌ How important is path dependency in firms' directed innovation in response to increase in fuel prices?
- Main contribution: Compared to earlier work by Popp (2002), who uses aggregate data, the paper uses an **international firm-level panel data** to provide **microeconomic** evidence of directed technical change, of which the theory is developed by Acemoglu (2002).

Hypothesis

- ① An increase in the price of the fossil fuel increases innovation in clean technologies, and decreases innovation in dirty technologies.
- ② Firms with an initially higher level of clean (dirty) technologies will tend to innovate more in clean (dirty) technologies.
- ③ Firms are more likely to innovate in clean technologies when its inventors are located in countries where other firms have been undertaking more clean innovations.

Econometrics Model

- Dynamic fixed effect Poisson specification for count outcome data.
- Two main empirical equations: $z \in \{C, D\}$

$$\begin{aligned} \text{PAT}_{z,it} = \exp(\beta_{zp} \ln FP_{it-1} + \beta_{z1} \ln \text{SPILL}_{C,it-1} + \beta_{z2} \ln \text{SPILL}_{D,it-1} \\ + \beta_{z3} \ln K_{C,it-1} + \beta_{z4} \ln K_{D,it-1} + \beta_{zw} \omega_{it} + T_{z,t}) \eta_{z,i} + \mu_{z,it}, \end{aligned} \quad (1)$$

- Lagged independent variables are to avoid contemporaneous feedback effects.
 - ① FP_{it} : the number of patents applied for in clean technologies by firm i in year t ;
 - ② $\text{SPILL}_{z,it}$: other firms knowledge stock in z technologies;
 - ③ $K_{z,it}$: firm's own stock of z technologies;
 - ④ ω_{it} : other control variables;

Data: PAT_{it}

- Clean patents are those related to electric, hybrid, and hydrogen vehicles; dirty patents are those related to internal combustion engine.
- Only count "triadic" patents: patents have been taken out in all three of the world's major patent offices in the United States, Europe, and Japan. These are most valuable inventions.
- Each invention is only counted once, no matter in how many patent offices it has been filed.
- Sample: All applicants that applied for at least one of these clean or dirty auto patterns between 1978 and 2005.

Data: Firm-specific Price

- Although variation of fuel prices is country-level, the profile of car sales across countries differs between auto firms. Firms' R&D decision will be more influenced by fuel prices in some countries that they sell more cars.
- Firm-specific fuel price is constructed by

$$\ln FP_{it} = \sum_c w_{ic}^{FP} \ln FP_{ct}$$

where w_{ic}^{FP} is the fraction of firm i 's patents taken out in country c .

- Rationale: a firm will seek intellectual property protection in jurisdiction where it believes it will need to sell in the future.

Data: Firm-specific Price

- In constructing weights, we use **all** patent files from sample firms (not only "triadic" patents).
- Since patent location could be influenced by shocks to innovation, the weights are calculated using patents portfolio of each company over the 1965~1985 "pre-sample" period. → Regression period: 1986~2005
- If a patent is filed in several countries, this patent enters several times in the firm's patent portfolio.

Data: Firm's Patent Stocks and Spillovers

- Firm's patent stocks are calculated

$$K_{z,it} = \text{PAT}_{z,it} + (1 - \delta)K_{z,it-1} \quad (2)$$

where δ is depreciation rate, to be 20 percent.

- Firm-specific spillover pools in z technology is constructed

$$\text{SPILL}_{z,it} = \sum_c w_{ic}^S \text{SPILL}_{z,ct}$$

where w_{ic}^S is the share of firm i 's inventors in country c (i.e. the inventors worked when they discovered the invention) between 1965 and 1985.

- Each invention is only counted once.

Data: Firm's Patent Stocks and Spillovers

- w_{ic}^S measures the relative importance of country c 's knowledge stock to firm i 's innovation.
- Country's spillover poll is constructed by

$$\text{SPILL}_{z,ct} = \sum_{j \neq i} w_{jc}^S K_{z,jt}$$

Explanation: Firm j has $K_{z,jt}$ stock of z technology. A fraction w_{jc}^S of these knowledge are developed by inventors in country c . Hence, firm j contributes $w_{jc}^S K_{z,jt}$ knowledge to country c .

Hypothesis 1

- Two regression equations are

$$\begin{aligned} \text{PAT}_{C,it} = \exp(\beta_{Cp} \ln FP_{it-1} + \beta_{C1} \ln \text{SPILL}_{C,it-1} + \beta_{C2} \ln \text{SPILL}_{D,it-1} \\ + \beta_{C3} \ln K_{C,it-1} + \beta_{C4} \ln K_{D,it-1} + \beta_{C\omega} \omega_{it} + T_{C,t}) \eta_{C,i} + \mu_{C,it}, \end{aligned} \quad (3)$$

$$\begin{aligned} \text{PAT}_{D,it} = \exp(\beta_{Dp} \ln FP_{it-1} + \beta_{D1} \ln \text{SPILL}_{C,it-1} + \beta_{D2} \ln \text{SPILL}_{D,it-1} \\ + \beta_{D3} \ln K_{C,it-1} + \beta_{D4} \ln K_{D,it-1} + \beta_{D\omega} \omega_{it} + T_{D,t}) \eta_{D,i} + \mu_{D,it}, \end{aligned} \quad (4)$$

Hypothesis 1

An increase in the price of the fossil fuel increases innovation in clean technology, and decreases innovation in dirty technologies. $\Leftrightarrow \beta_{Cp} > 0$ and $\beta_{Dp} < 0$

Hypothesis 2

- Two regression equations are

$$\begin{aligned} \text{PAT}_{C,it} = \exp(\beta_{Cp} \ln FP_{it-1} + \beta_{C1} \ln \text{SPILL}_{C,it-1} + \beta_{C2} \ln \text{SPILL}_{D,it-1} \\ + \beta_{C3} \ln K_{C,it-1} + \beta_{C4} \ln K_{D,it-1} + \beta_{C\omega} \omega_{it} + T_{C,t}) \eta_{C,i} + \mu_{C,it}, \end{aligned} \quad (5)$$

$$\begin{aligned} \text{PAT}_{D,it} = \exp(\beta_{Dp} \ln FP_{it-1} + \beta_{D1} \ln \text{SPILL}_{C,it-1} + \beta_{D2} \ln \text{SPILL}_{D,it-1} \\ + \beta_{D3} \ln K_{C,it-1} + \beta_{D4} \ln K_{D,it-1} + \beta_{D\omega} \omega_{it} + T_{D,t}) \eta_{D,i} + \mu_{D,it}, \end{aligned} \quad (6)$$

Hypothesis 2

Firms with an initially higher level of clean (dirty) technologies will tend to innovate more in clean (dirty) technologies.

$\Leftrightarrow \beta_{C3} > 0, \beta_{C3} > \beta_{D3}, \beta_{C3} > \beta_{C4}$ and $\beta_{D4} > 0, \beta_{D4} > \beta_{C4}, \beta_{D4} > \beta_{D3}$

Hypothesis 3

- Two regression equations are

$$\begin{aligned} \text{PAT}_{C,it} = \exp(\beta_{Cp} \ln FP_{it-1} + \beta_{C1} \ln \text{SPILL}_{C,it-1} + \beta_{C2} \ln \text{SPILL}_{D,it-1} \\ + \beta_{C3} \ln K_{C,it-1} + \beta_{C4} \ln K_{D,it-1} + \beta_{C\omega} \omega_{it} + T_{C,t}) \eta_{C,i} + \mu_{C,it}, \end{aligned} \quad (7)$$

$$\begin{aligned} \text{PAT}_{D,it} = \exp(\beta_{Dp} \ln FP_{it-1} + \beta_{D1} \ln \text{SPILL}_{C,it-1} + \beta_{D2} \ln \text{SPILL}_{D,it-1} \\ + \beta_{D3} \ln K_{C,it-1} + \beta_{D4} \ln K_{D,it-1} + \beta_{D\omega} \omega_{it} + T_{D,t}) \eta_{D,i} + \mu_{D,it}, \end{aligned} \quad (8)$$

Hypothesis 3

Firms are more likely to innovate in clean technologies when its inventors are located in countries where other firms have been undertaking more clean innovations.

$\Leftrightarrow \beta_{C1} > 0, \beta_{C1} > \beta_{D1}, \beta_{C1} > \beta_{C2}$ and $\beta_{D2} > 0, \beta_{D2} > \beta_{C2}, \beta_{D2} > \beta_{D1}$

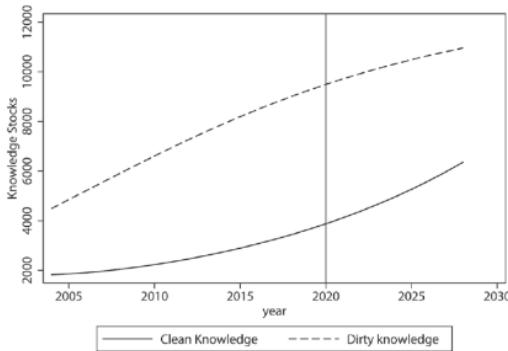
Results

Table 1 Regressions of Clean and Dirty Patents

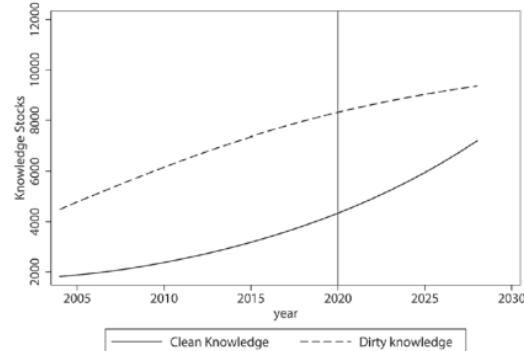
	DEPENDENT VARIABLE: CLEAN PATENTS			DEPENDENT VARIABLE: DIRTY PATENTS		
	(1)	(2)	(3)	(4)	(5)	(6)
Fuel price ($\ln FP$)	.970*** (.374)	.962** (.379)	.843** (.366)	-.565*** (.146)	-.553*** (.205)	-.551*** (.194)
R&D subsidies ($\ln R&D$)		-.005 (.025)	-.006 (.024)		-.006 (.021)	-.005 (.020)
Emission regulation			-.008 (.149)			.04 (.120)
Clean spillover ($\ln SPILL_C$)	.268*** (.076)	.301*** (.087)	.266*** (.088)	-.093* (.048)	-.078 (.067)	-.089 (.063)
Dirty spillover ($\ln SPILL_D$)	-.168** (.085)	-.207** (.098)	-.165* (.098)	.151** (.064)	.132 (.082)	.138* (.077)
Own stock clean ($\ln K_C$)	.306*** (.026)	.320*** (.027)	.293*** (.025)	-.002 (.022)	-.004 (.022)	.021 (.020)
Own stock dirty ($\ln K_D$)	.139*** (.017)	.135*** (.017)	.138*** (.017)	.557*** (.031)	.549*** (.022)	.539*** (.017)
Observations	68,240	68,240	68,240	68,240	68,240	68,240
Firms	3,412	3,412	3,412	3,412	3,412	3,412

Simulation Methods

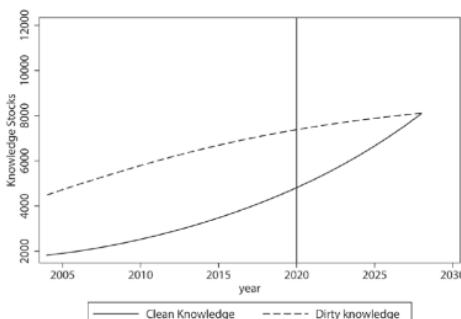
- Knowledge stocks evolve according three equations:

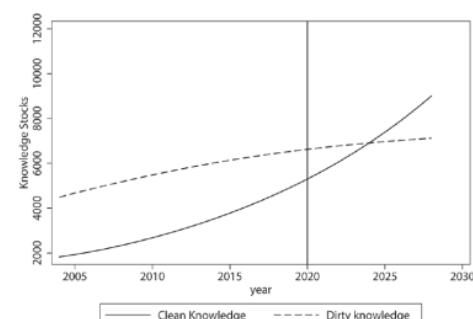

$$\left\{ \begin{array}{l} \hat{PAT}_{z,it} = \exp(\hat{\beta}_{zp} \ln FP_{it-1} + \hat{\beta}_{z1} \ln SPILL_{C,it-1} + \hat{\beta}_{z2} \ln SPILL_{D,it-1} \\ \quad + \hat{\beta}_{z3} \ln K_{C,it-1} + \hat{\beta}_{z4} \ln K_{D,it-1} + \hat{\beta}_{zw} y_{it} + T_{z,t}) \eta_{z,i} \\ K_{z,it} = \hat{PAT}_{z,it} + (1 - \delta) K_{z,it-1} \\ SPILL_{z,it} = \sum_c w_{ic}^S \sum_{j \neq i} w_{jc}^S K_{z,ji} \end{array} \right.$$

- Recursively compute values of expected patenting under different scenarios and use those to update the knowledge stock variables (i.e. $K_{z,it}$ and $SPILL_{z,it}$)
- We do this for every sample firm and then aggregate across the world economy in each period

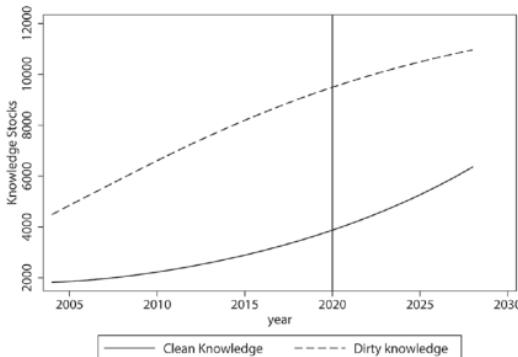

Experiments

- Experiment 1: the effect of fuel prices under path dependence
 - ① Keep fuel prices at 2005 values;
 - ② Increase worldwide fuel prices in 2006 (and fixed at this level therefore) by 10%, 20%, 30%, 40% and 50%;
- Experiment 2: the important of path dependency in firms' response to the increase in fuel prices
 - ① Fixing innovation stock variables (i.e $K_{z,it}$ and $SPILL_{z,it}$) at their 2005 level
 - In each scenario, GDP per capita grows at 1.5% per year

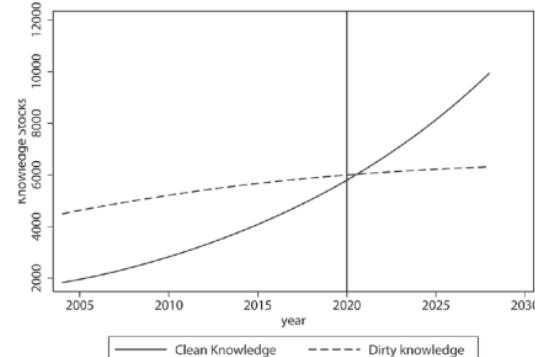

Experiment 1 Results: Effect of Fuel Prices


(a) Price Increase of 0%

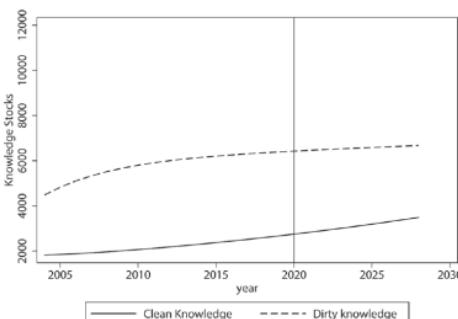
(b) Price Increase of 10%

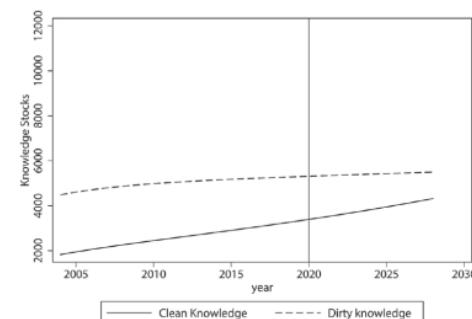


(c) Price Increase of 20%



(d) Price Increase of 30%


Experiment 2 Results: The Effect of Path Dependency


(a) Price Increase of 0% with PD

(b) Price Increase of 40% with PD

(c) Price Increase of 0% without PD

(d) Price Increase of 40% without PD

Conclusion

- Clean innovation is simulated by increase in the fuel prices whereas dirty innovation is depressed.
- There is strong evidence for "path-dependency":
 - ① Firms more exposed to clean (dirty) innovation from other firms are more likely to direct their research to clean (dirty) innovation;
 - ② Firms with a history of clean (dirty) innovation in the past are more likely to focus on clean (dirty) innovation in the future;
- Path-dependency increases the response of innovation trends to tax policy:
 - ① Since the stock of dirty innovation is greater than that of clean, the path dependency effect tend to lock economies into high carbon emissions;
 - ② With effective policies, path dependency can help reinforce the growth of clean innovation;

References

Acemoglu, D. (2002). Directed technical change. *The review of economic studies*, 69(4):781–809.

Aghion, P., Dechezleprêtre, A., Hemous, D., Martin, R., and Van Reenen, J. (2016). Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. *Journal of Political Economy*, 124(1):1–51.

Popp, D. (2002). Induced innovation and energy prices. *American economic review*, 92(1):160–180.