
1 Overview
basic infor about the paper Count and count-like data in finance.

• 2022, Journal of Financial Economics

– authors

∗ Malcolm I. Wardlaw (University of Georgia)
∗ Zack Liu (University of Houston)
∗ Jonathan B. Cohn(University of Texas at Austin)

research background

• many applications deals with count and count-like outcome.

– ex: number of patents, tons of toxic emissions,number of workplace injuries.

• feature of count and count-like outcome

– non-negative outcome

– many zeros

• some econometric approaches used

– linear regression

– log-linear regression

– log1plus regression

– Poisson regression

– others: negative binomial , zero-inflated poisson

summary of the paper

• do not use linear regression

• it is risky to use log-linear regression

• do not use bullshit log1plus regression

• use Poisson regression

format of the presentation heuristic problems solving to understand the key takeaways of this paper.
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2 Some concepts and definitions
Definition 1 (mean and variance of log normal distribution). Suppose X follows log normal distribution
with ln(X) ∼ N(µ, σ2) then

E(X) = exp

(
µ+

σ2

2

)
V ar(X) =

[
exp

(
σ2
)
− 1
]
exp

(
2µ+ σ2

)
.

Definition 2 (IHS transformation). Inverse hyperbolic sine transformation, i.e,

sinh−1(y) = ln
(
x+

√
x2 + 1

)
,−∞ < x < ∞.

Problem 1 (lognormal and normal mean variance relationship). Suppose X follows log normal distribution
and we know E(X) and V ar(X) and please derive µ and σ2.

solution:
From E(X) and V ar(X) formulas in Definition 1, we have

σ2 = ln(
V ar(X)

[E(X)]2
+ 1)

µ = ln[E(X)]− 1

2
ln(

V ar(X)

[E(X)]2
+ 1).

Example 1 (exposure variable in Poisson regression). The exposure variable accounts for the varying amount
of time or space each observation represents. It helps to scale the counts appropriately, making the model more
accurate when dealing with data collected over different periods or areas. For instance, if you’re modeling the
number of accidents per day in different cities, the exposure variable would represent the number of days observed
for each city.

3 Key takeaways

3.1 linear regression
Exercise 1 (true model is linear and estimate linear regression). Suppose the true model is

y = xβ + ε

with observable data (xi, yi)
N
i=1 and yi is a count variable and we estimate a linear regression and obtain β̂.

implication:

1. prediction ŷ = xβ̂ may be negative thus use linear model y = xβ+ ε is not suitable to model count,count-like
data.
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2. In the paper, they also argue linear regression suffers from efficiency loss.

Exercise 2 (true model is nonlinear and estimate linear regression). Suppose the true model is

y = exβη

with observable data (xi, yi)
N
i=1 and E(η|x) = 1 and we estimate a linear regression

y = xπ + v

and obtain π̂.

Problem 2. Show that π̂ is inconsistent for β.
solution:
obvious due to OLS formula: π̂ = (

∑
x2
i )

−1(
∑

xiyi) = (
∑

x2
i )

−1(
∑

xie
xiβηi).

implication:

1. when the true model is nonlinear and estimate a linear regression, consistency is difficult to ensure.

2. efficiency loss may exist compared to using nonlinear models like Poisson regression.

3.2 Log-linear regression
Exercise 3 (log-linear regression). Suppose the true model is

y = exβη

and E(η|x) = 1 so that E(y|x) = exβ .With observable data (xi, yi)
N
i=1 , we can estimate a log-linear regression

ln y = xβ + ln(η)

and obtain estimate β̂.

Conclusion (Takeaway 1). with heteroskedasticity in η, log-linear estimates are inconsistent.

Problem 3. Show that β̂ is consistent when E(ln η|x) = 0.
solution:
obvious due to OLS formula: β̂ = (

∑
x2
i )

−1(
∑

xi log(yi)) = β + (
∑

x2
i )

−1(
∑

xi log(ηi)) and the law of iterated
expectations.
implication:

• E(ln η|x) = 0 is a sufficient condition for log-linear regression to be consistent.

Problem 4. Show that E(η|x) = 1 does not necessarily imply E(ln η|x) = 0.
solution:
Just take a counter example when distribution of η does not depend on x.
When η is discrete with two values 1

2 ,2 with probability 2
3 and 1

3 separately then

E(ln η|x) = 2

3
ln(

1

2
) +

1

3
ln(2) = −1

3
ln(2) ̸= 0.

implication:
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• E(η|x) = 1 is not enough to ensure E(ln η|x) = 0, the condition for consistency of log-linear regression.

Problem 5. Show that E(ln η) depends on higher order of moments of η, i.e., E(η2), E(η3), ...
solution:
To see this, consider the expansion of lnx =

∑∞
n=1(−1)n−1 (x−1)n

n therefore

E(ln η) =

∫
ln(η)f(η)dη

=

∫ ∞∑
n=1

(−1)n−1 (η − 1)n

n
f(η)dη

where f(η) is the density of η.
implication:

• expectation of logarithm of a random variable X will depend on its higher order moments.

Problem 6. Show that when E(η|x) = 1 and E(η2|x) = g(x) > 0 where g(x) is a non-constant function depend
on x, then E(ln η|x) is a function in x.

solution:
To see this, use the conclusion of the previous problem, E(ln η|x) will depend on higher order of moments of η|x

thus depend on E(η2|x) therefore, E(ln η|x) will be a function in x.
implication:

• when there is heteroskedasticity in η, E(ln η|x) ̸= 0 thus log-linear estimate is not consistent.

Conclusion (Takeaway 2). Bias due to heteroskedasticity in η can cause β̂ to have the wrong sign.

Under the conditions given in Exercise 3, we further assume x ∼ N(0, σ2
x) and η is log-normally distributed with

mean 1 and standard deviation ση(x) = eδx.

Problem 7. Derive the expectation and variance of ln(η)|x.
solution:
ln(η)|x is a normally distributed random variable and we use the formulas in Problem 1.

E[ln(η)|x] = −1

2
ln(e2δx + 1)

V ar[ln(η)|x] = ln(e2δx + 1).

Problem 8. Show that β̂ is not consistent.
Solution:
There is heteroskedasticity in η thus we can use the conclusion of Problem (6).
Or we can try to show this directly by using

β̂ = (
∑

x2
i )

−1(
∑

xi log(yi)) = β + (
∑

x2
i )

−1(
∑

xi log(ηi)).

We only need to show E(x ln(η)) ̸= 0 and this is what we will do in the next problem.
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Problem 9. Show that E(x ln(η)) = − 1
2δσ

2
x .

Solution:
Since ln(η)|x is normally distributed with mean E[ln(η)|x] = − 1

2 ln(e
2δx+1), x ln(η)|x is also normally distributed

with mean
E[x ln(η)|x] = −1

2
x ln(e2δx + 1).

Therefore by law of iterated expectation

E(x ln(η)) = E [E[x ln(η)|x]]

=

∫ {
−1

2
x ln(e2δx + 1)

}
ϕ(x)dx

where ϕ(x) is the PDF of x.
We construct a new function

g(x) = −1

2
x ln(e2δx + 1) +

1

2
δx2

and since

g(−x) =
1

2
x ln(

e2δx + 1

e2δx
) +

1

2
δx2

=
1

2
x ln(e2δx + 1)− 1

2
δx2

= −g(x),

g(x) is odd.
Therefore

E(x ln(η)) =

∫ {
−1

2
x ln(e2δx + 1)

}
ϕ(x)dx

=

∫ {
−1

2
x ln(e2δx + 1) +

1

2
δx2 − 1

2
δx2

}
ϕ(x)dx

=

∫
g(x)ϕ(x)dx−

∫
1

2
δx2ϕ(x)dx

= −
∫

1

2
δx2ϕ(x)dx

= −1

2
δE(x2)

= −1

2
δσ2

x.

Remark 1. There are some errors in the proof provided in Appendix A.

Problem 10. Show that plimn−→∞β̂ = β − δ
2 .

Solution:
The bias is the limit of (

∑
x2
i /N)−1(

∑
xi log(ηi)/N), with E(x2

i ) = σ2
x , the conclusion follows E(x ln(η)) =

− 1
2δσ

2
x derived in Problem 9.
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Conclusion (Takeaway 3). All else equal when δ > 0 (δ < 0),then the bias is downward (upward).
This is a straightforward application of the result in Problem 10.

• when δ > 0, plimn−→∞β̂ − β = δ
2 > 0.

• when δ < 0, plimn−→∞β̂ − β = δ
2 < 0.

Remark 2. In the paper, they derived this conclusion in a more general context using concept of second order
stochastic dominance. If you are interested, please refer to their equation (6).

3.3 log1plus regression
Exercise 4 (log1plus regression). Suppose the true model is

y = exβη

with homoskedastic η and with observable data (xi, yi)
N
i=1 , we can estimate a log1plus regression

ln(y + 1) = xλ+ ϕ

and obtain estimate λ̂ = (
∑

x2
i )

−1(
∑

xi log(yi + 1)).

Problem 11. Show that λ ̸= β.
Solution:
λ is

λ =
∂E[ln(y + 1)|x]

∂x

=
1

E[(y + 1)|x]
∂E[(y + 1)|x]

∂x

=
1

1 + E(y|x)
∂E(y|x)

∂x

while
β =

∂E(ln(y)|x)
∂x

=
1

E(y|x)
∂E(y|x)

∂x
.

Conclusion (Takeaway 4). log1plus regression coefficient are not interpretable as semi-elasticities nor
can any economically meaningful relationship.

Problem 12. Derive the relationship between λ and β.
Solution:
From previous problem, we have

λ [1 + E(y|x)] = β [E(y|x)]
therefore

λ =
E(y|x)

1 + E(y|x)
β.

Implications:
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1. β cannot be recovered from λ as E(y|x) is not observable.

2. When E(y|x) is large, λ ≈ β. But when E(y|x) is large, y has few observations with zero values and no need
to use log1plus.

3. When E(y|x) is small, λ and β has a big difference.

4. λ and β has the same sign as E(y|x) > 0.

Conclusion (Takeaway 5). log1plus regression coefficient is almost certain to suffer from two forms of
bias that make even the sign of β difficult to infer from λ estimates.

I will just provide some intuition.

1. nonlinear relationship between ln(1 + y) and x under any reasonable economic model between y and x.

2. nothing special to add 1 instead of another constant c.

Problem 13 (bias in log1plus regression). Suppose the true model is

y = exβη

with homoskedastic η and with observable data (xi, yi)
N
i=1 , we can estimate a log1plus regression

ln(y + 1) = xλ+ ϕ.

Show that ln(y + 1) is nonlinear in x.
solution:ln(y + 1) = ln(exβη + 1) is a nonlinear function in x.

3.4 IHS regression
Conclusion (Takeaway 6). Takeaway 4 and 5 holds for linear regression of an IHS-transformed outcome
variable.

3.5 Poisson regression
Definition 3 (Poisson regression). The model assumes the dependent variable has a Poisson distribution con-
ditional on x with density

f(y|x) = e−µ(x)[µ(x)]y

y!

with conditional expectation
µ(x) = E(y|x) = exβ .

Note 1 (Poisson Pseudo Maximum likelihood estimator). The likelihood of an observed data {xi, yi}Ni=1 is

L(y1, · · · , yN |x1, · · · , xN ;β) =

N∏
i=1

e−exiβ

[exiβ ]yi

yi!
,
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and then log-likelihood is

lnL =

N∑
i=1

[
yi(xiβ)− exiβ − (yi!)

]
.

Take first order condition with respect to β

N∑
i=1

[
yi − exiβ

]
xi = 0.

Example 2 (Fixed effects Poisson regression). Let αi be the fixed effects for group i, then the fixed effects
Poisson model condition expectation is

E(yit|xit) = eαi+xitβ = eαiexitβ .

The likelihood of an observed data {xit, yit}N,T
i=1,t=1 is

L(β, α) =

N∏
i=1

T∏
t=1

e−eαi+xitβ

[eαi+xitβ ]yit

yit!
,

The log-likelihood is

lnL(β, α) =
∑
i

[
−
∑
t

eαi+xitβ +
∑
t

yit(xitβ + αi)−
∑
t

ln yit!

]

differentiating with respect to αi yields

α̂i =

∑
t yit∑

t e
xitβ

and substitute into the log-likelihood we obtain the concentrated likelihood function

lnLconc(β) ∝
∑
i

∑
t

[
yitxitβ − yit ln

(∑
s

exitβ

)]
.

Conclusion (Takeaway 7,9,10,11). Poisson regression has the following advantages:

1. clear interpretation of semi-elasticity.(Takeaway 7)

2. do not require the relationship between higher-order moments of error and covariate for consistent estimation
thus allow heteroskedasticity in the error η (compared to log-linear regression).(Takeaway 7)

3. admit separable group fixed effects.(Takeaway 9)

4. fixed effects Poisson requires excluding any group which the outcomes are all zero. These groups contain no
information about regression coefficient.(Takeaway 10)

5. produce valid estimates when y is continuous.(Takeaway 11)

6. admits an exposure variable that acts as a scaling variable and can be used in IV regression.(Takeaway 11)
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Example 3 (conditional mean-variance equality and overdispersion). We are interested in modelling the
following relationship: y is the number of accidents at an intersection and xis the average daily traffic volume of
this intersection.Suppose we use Poisson model and E(y|x) = exβ with β > 0.

conditional mean-variance equality holds when

• small x, small E(y|x) = exβ and small variance of y|x and E(y|x) = V ar(y|x).

• larger x, larger E(y|x) = exβ and larger variance of y|x but still E(y|x) = V ar(y|x).

Overdispersion happens when

• larger x, larger E(y|x) = exβ and larger variance of y|x but E(y|x) < V ar(y|x).

When the daily traffic volume increases, the variance of number of accidents increases more, thus called "overdis-
persion".

Conclusion (Takeaway 8). Poisson regression imposes conditional mean-variance equality restriction
and violations of this resctriction reduces efficiency but does not cause any bias.

3.6 Other count-based regression models
Definition 4 (Negative binomial model). Binomial model: B(n, p), the probability distribution of the number
of success in n experiments with success probability p. The support is 1, · · · , n.

Negative binomial model: NB(r, p), the probability of the number of failures before the the number of success
reaches r. The support is 1, · · · , n, · · · .

The PDF of NB(r, p) is

P (Y = k) = p× Ck
k+r−1(1− p)kpr−1 = Ck

k+r−1(1− p)kpr.

Since Ck
k+r−1 = (k+r−1)!

k!(r−1)! = Γ(k+r)
k!Γ(r) , an alternative of PDF is

P (Y = k) =
Γ(k + r)

k!Γ(r)
(1− p)kpr

where Γ(·) is the gamma function.
The mean of NB(r, p) is r(1−p)

p and variance is r(1−p)
p2 .

Example 4 (Fixed effects negative binomial model). Hausman, Hall and Griliches (1984) has proposed a
fixed effects negative binomial model for panel data but this is criticized by Allison and Waterman (2002). They
argued that HHG model is not a true fixed effects model.

The PDF of HHG model is

f (yit | λit, θi) =
Γ (λit + yit)

Γ (λit) Γ (yit + 1)

(
θi

1 + θi

)yit
(

1

1 + θi

)λit

where λit = exitβ and θi is the fixed effects.
The mean and variance of yit are given by

E (yit) = θiλit

V ar (yit) = (1 + θi) θiλit.
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If we write θi = eδi then
E (yit) = exp (δi + βxit)

V ar (yit) =
(
1 + eδi

)
E (yit) .

The problem is that δi plays a different role than xit.

• xit only affects variance through E(yit)

• δi affects the variance indirectly through E(yit) and directly through eδi .

Definition 5 (Zero inflated Poisson (ZIP)). Zero-inflated Poisson distribution has the following PDF

P (Y = 0) = π + (1− π)e−λ

P (Y = yi) = (1− π)
λyie−λ

yi!
, yi = 1, 2, 3, . . .

The mean is (1− π)λ and the variance is λ(1− π)(1 + πλ).

Conclusion (Takeaway 12). Negative binomial or zero-inflated Poisson regression may be more efficient
than Poisson regression but do not admit separable group fixed effects.
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